

- 121.(A) Argon being inert, creates inert atmosphere to prevent the oxidation of metal by O_2 of air.
- **122.(C)** In XeO_3 there are total of 4 electron pairs around central atom. Out of which 3 are bonding electron pairs and one is non-bonding electron pair. Therefore, the hybridisation of central atom is sp^3 and geometry is trigonal pyramidal.

- 123.(A) Xenon fluorides are strongly oxidising, since xenon is more stable in its atomic state.
- 124.(C) Statement-I is correct but Statement-2 incorrect.

Orthoboric acid (H_3BO_3) is soluble in water and behaves as weak monobasic acid. It does not denote protons like most acids, but rather it accepts OH^- ions. It is, therefore, Lewis acid and is better written as $B(OH)_3$.

$$B(OH)_3 + 2H_2O \Longrightarrow H_3O^+ + [B(OH)_4]^-$$
; pK_a = 9.25

- **125.(A)** Both statements are true. Boron forms only covalent compounds (bonds) because small sized B ion polarizes the corresponding anion larglely.
- **126.(B)** Sodium thiosulphate ($Na_2S_2O_3$) shows reducing action as it is oxidised by chlorine.

$$\mathrm{Na_2S_2O_3} + 4\mathrm{Cl_2} + 5\mathrm{H_2O} \rightarrow 2\mathrm{NaHSO_4} + 8\mathrm{HCl}$$

- **127.(C)** Among phosphates and nitrates, nitrates are more soluble in water hence less abundant in earth crust. Further oxidation of nitrates (NO_3^-) is not possible because its oxidation state is +5 which is its highest oxidation state.
- **128.(C)** The actual bond angle is in order of $NH_3 > PH_3 > AsH_3 > SbH_3 = 106.5^{\circ} 93.5^{\circ} 91.5^{\circ} 91.3^{\circ}$

The bond angle in ammonia is less than $109^{\circ}28'$ due to repulsion between lone pair present on nitrogen atom and bounded pair of electrons. The decreased bond angle in other hydrides can be explain by the fact that the sp^3 hybridization becomes less and less distinct with increasing size of the central atom.

129.(B) In disproportionation reaction, the same element of compound its oxidized and reduced.

$$\begin{array}{c} 0 \\ P4 + 3NaOH + 3H_2O & \longrightarrow 3NaH_2 \\ PO_2 + PH_3 \\ \end{array}$$
 disproportionation reaction

130.(AB) When ammonium salt NH_4NO_3 or NH_4NO_2 (ammonium salts are colourless) is boiled with excess of NaOH, ammonia (NH_3) gas is evolved as follows:

$$NH_4NO_2 + NaOH \longrightarrow NaNO_2 + NH_3 + H_2O$$

$$NH_4NO_3 + NaOH \longrightarrow NaNO_3 + NH_3 + H_2O$$

The NH₃ gas evolved is non-flammable gas.

When the gas evolution cases we are left with $NaNO_2$ or $NaNO_3$ in solution.

These salts get reduced when Zn is added to this solution containing salt (NaNO2 or NaNO3) and excess NaOH and NH3 gas is evolve.

$$\text{NaNO}_2 + 6\text{(H)} \xrightarrow{\quad \text{Zn/NaOH} \quad} \text{NaOH} + \text{NH}_3 + \text{H}_2\text{O}$$

$${\rm NaNO_3 + 8(H)} \xrightarrow{\quad \ \ \, {\rm Zn/NaOH} \ } {\rm NaOH + NH_3 + 2H_2O}$$

Thus the colourless salt [H] is either NH_4NO_2 or NH_4NO_3 .

Thus (A) and (B) are correct answers

[NOTE: NaCl formed has no reaction with NaOH]

131.(C) In group-14 elements, the lower (and not higher) oxidation states are more stable for heavier members of the group due to inert pair effect.

Thus Pb⁴⁺ is less stable as compared to Sn⁴⁺ (lead is heavier than Tin). Therefore Pb⁴⁺ acts as a strong oxidising agent than Sn⁴⁺. Hence Statement-1 is false and Statement-2 is true. Thus the correct answer is option (C).

132.(B)
$$P_4 + 3O_3 \longrightarrow P_4O_6$$

Nitrogen prevents further oxidation of P₄O₆ to P₄O₁₀.

 P_4 when treated with dry O_2 gives P_4O_6 and finally P_4O_{10} .

With moist oxygen, P₄ gives H₃PO₃.

$$P_4 + 3NaOH + 3H_2O \longrightarrow 3NaHSO_4 + PH_3$$

133.(ABC)

$$N_2O: N = N = O \longleftrightarrow N \equiv N - O$$

134. A-(p, s); B-(q, s); C-(r, t); D-(q, t)

$$3\text{Cu} + 8\text{HNO}_3(\text{dil.}) \rightarrow 3\text{Cu}(\text{NO}_3)_2 + 2\text{NO} + 4\text{H}_2\text{O}$$
(s)

$$\begin{array}{c} \text{Cu} + 4\text{HNO}_3(\text{conc.}) \rightarrow \text{Cu(NO}_3)_2 + 2\text{NO}_2 + 2\text{H}_2\text{O} \\ \text{(s)} & \text{(q)} \end{array}$$

$$4Zn + 10HNO_3(dil.) \rightarrow 4Zn(NO_3)_2 + 2N_2O + 2H_2O$$

$$\begin{array}{c} 4Zn + 10HNO_{3}(dil.) \rightarrow 4Zn(NO_{3})_{2} + 2N_{2}O + 2H_{2}O \\ (t) & (r) \end{array}$$

$$Zn + 4HNO_{3}(conc.) \rightarrow Zn(NO_{3})_{2} + 2NO_{2} + 2H_{2}O \\ (t) & (q) \end{array}$$

135.(6) Coordination number of Al is 6. It exists in ccp lattice with 6 coordinate layer structure.